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OPERATOR VALUED FUNCTION S AND BOUNDARY VALUE PROBLEMS

FOR THE HELMHOLTZ EQUATION . I . SPHERICAL GEOMETRIES .

1. Introduction.

Let ~ be an open , connected region in that has a smooth

closed , bounded boundary ~~~~~. We denote by i’~ the closure of

where ~ = ‘~ u ~12.

A number of boundary value problems of mathematical physics

reduce to requiring solutions of the Helmholtz equation .

LW := ( V 2+k 2 )w f , > 0 (1.1)

defined in the region ~ and which are required to satisfy certain

boundary conditions denoted typically by (bc).

It can be shown that the problem of solving the boundary value

problem

LW = f , w E (bc) (1.2)

can be reduced to that of solving a boundary integral equation of

the form
(I—K)u g (1.3)

• 
• where K is a linear integral operator mapping H(ac2) E H, a

Hu bert space of functions defined on ~
), into itself , I denotes

the identity operator on H whilst u and g are respectively

unknown and known elements of H.

1
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Strictly, the operator K in (1.3) depends on the parameter

k appearing in (1.1) and we should in consequence regard K as

ar. operator valued function of k. It will be our intention to

make explicit this aspect of the boundary integral operator K.

Specifically, we consider here the equation

AKu = u , A € (1.4)

and in this and subsequent communications we shall concern ourselves

with the following problems .

(1) The determination of a(K), the spectrum of K.

(ii) The determination of the variation of c (K)

with k.

(iii) A discussion of the significance of the values A = ±1.

2. A particular case; spherical geometry.

The exterior Neumann problem for the Helntholtz equation can be

reduced to a study of the boundary integral equation (Kleinman and

Roach , 1974]

(I—K)w = g (2.1)

dere K : L2(3~ ) + L2(aQ) is a linear operator defined by

(Ku) (p) = J u(q) f~—(p,q)dS , p,q c (2.2)q

A 

~~ ..- -- - . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-_ _ _ _ _ _ _ _ _
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where
y ( P ,Q) = _e1~~ /21r 1~, R R(P,Q), P,Q c

a
• ~~~~••~~= f l  ‘ Vp p

and n~ is the inward drawn unit vector normal to ~~ erected

at p € 3 ~~~.

We consider the equation (2.1) in the particular case when ~2 is

the unbounded region exterior to a sphere of radius a. Two

situations present themselves; k = 0 and k ~ 0, we treat each

in turn.

2(a). k = 0, expression for eigenvalues.

In this case the full form of (2.1) is

w ( p) - 

~~ J w ( q )  ~~~~[~ )dS q = g (p ) , R = R ( p , q )  (2 . 3 )

The expansion of h R  in terms of complete sets or function is wel l

known (c f .  Magnus and Oberhettinger , 1949, which hereinaf ter we

refer to as M.O) . Specifically

~ r~~
R = J0 r:~~~ • P (cos 0) (2.4)

where P := P(r~~ O~~,$~ ), Q := Q(rQ~0Q~$Q)

p := ~~~~~~~~~~~~ q := q(rqs Oq~$q
)

11 
_  _
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cosepq := cos O:= cos O~ cos eq + sin e~ sin eq cos(~~
_
~4
) (2.5)

:= min (rp~rq)i r> := max (rp~rq) (2.6)

Consequently 

n-i
= 

n~ O r~ +l • P~~( cos 0 ) ,  r~ < rq

r~
1 (2.7)

_
~ 1~0

(n + l)  
r~~ +2 P~~(cos O~~, > r

Whe n r~ = rq = a ( i . e .  both points on the surface a~2 ] and allowing

for approaching from D_ , the inside or D+ the outside,of ~~~, we

take the mean of the two results in (2.7) and obtain

a (ii 1
~flp tRJ 

= 
2 

P1~(cos 0)

to be interpreted as a distribution on L2(aQ). The homogeneous form

of (2.3), in full  form , can now be written.

or

w(P) — ~~ J d O q J 0
~~~~qa2 sin eq{_ 

~~ ~~~~~~~~~ 
e) } w(q) = 0

w(p) + 
~~ n O  f~

d0q f d + q sin 0q Pn (cos O)w(q) = 0 (2.8)

Solutions of this equation can be found in terms of the spherical

harmonics:

..- —~~~--..— - - -
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~m ( O~~~) : P
m
(COS O)cos m4~ , e even in •n,e n

Pm (cos O)sin m4 , 0 * odd in •

where P~~(cos 0) is the n—th associated Legendre function of order

m. The system {Y~~e~
Y
~~O} 

is known to be complete for n > 0 ,

m < n on L2((O,7r)x (O ,2n)) = L2(a~ ) [c.f. M.O. and Smirnov, Vol.

IV , 1964] . If in (2.8) we set:

w(p) Y
~~e

(Op~ 4~p
) . ( 2 . 9 )

and similarly for w(q) then (2.8) becomes:

Y
~,e

(0 p~+p
) + 

~ 
J d O q J d ~q sin 0q P (cos O ) Y ~~ e ( O q~ 4~q

) = 0

This double integral can be evaluated by the orthogonality proper-

ties of the spherical harmonics (M.O. p. 55] and we obtain

m A 4 r  mY n ,e ( O p~~ p ) + 4w 2n+fn,e p~~p) — 0

0 0

Y
~~ e (O p~~ p ) {1+ 2~ +i} 

=

Consequently from 2.10 we see that the eigenvalues of (2.3) are the

scalars
= —(2n+l) (2.11)

and A~ is an eigenvalue of (2.3) of multiplicity 2n+l when

n ~ 0. This fo11ow~ because for fixed n we have n eigenfunctions

0 < m < n for the even situation and 1 < m < n for the odd ;

hence multiplicity 2n+1.

—--- —----______________________________
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n=2 n=1
mult=5 mu lt— 3

I n=O A-pla ne
muit= 1

—
~~~ 4 ~~~~~ —2 ( 0

Eigenvaiue distribution: A (k)
k=0

2. (b) k ‘~ 0, expression for eigenvalues.

In the case k ~ 0 the homogeneous form of equation (2 .1 )

becomes

ikR
w(p)— ~~J~~

w(~ ) 
.

~~~~~

_— {
~ 

)dS~ = 0. ( 2 . 1 2 )

Using known expansions (M.O. p. 21] we have for this case

e1~~ = ik 
n~0 

(2n+]~~~~~ r < ) (1) (kr )P (cos 0) (2.13)

where

z (X) = /~
—. Z~~~112

(x) (2.14)

and Z
n 

represents either in 
the spherical Bessel function

or h~
1
~ the spherical Hankel function of the f i rs t  kind while

Z represents the cylindrical counterparts.
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Proceeding as before we differentiate (2.13) with respect to

n , obtain expressions for p tending to ac~ from inside andp

outside a~ then add and finally divide by 2 to obtain:

~ ei~
(
~ 

2~~
R J = ~ ~ (2n + i ) {~ (k a )h ~~~ ‘ (ka)+j t (ka)h W (ka)1P (cos 0)n J nn=O

(2.15)

Substituting (2.15) into (2.12) we obtain:

24
2ww ( p) — — dO (d~ w(q)a

2sinOq ~~~~~~~~~~~~~~~~~~~~~~~~~~
~ qj 0 q

+ j~~(ka)h~
1
~ (ka)}P (cos 0) = 0.

fl

If we now interchange the order of integration and abbreviate the

integrand in an obvious way then we obtain:

2~~ ii 2wAi(ka)w(p)— 4w ~ (2n+l)I j h~~~’+ i ’h ~~~ 1 dO d~ gj~0 P (cos O)w(q)
n=O I n n  n f l  J j 0  q~ q q n

= 0. (2.16)

As before set

w(p) = Ym (2.17)

and employ the associated orthogonality properties (M.O. p. 55)

to obtain

Ym ~ (O ,~ 
) —  .~.2.(ka)

2(2fl+l)Ii h )
~~+i,h

(1
~~

I 4 ,~m eln fi n n J’~2n+ 1 n ,oJ = 0.n ,~ p p

This implies that

.1

L~
T 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

• •



—8—

y m e (0 ,~ )~~l-A . (ka)2 Lj hW I +h (l)j 1 ] ~~~ =n , o p p~~ 1. fl n n n j

and consequently we deduce that

= 
2 

1 
(1 (1 (2.18)

~ i(ka) [j ’h ~~~~~~ 
I ]

which is an eigenvalue of (2.12) of multiplicity 2n-I-l (n>O).

Now it can be shown [Abramowitz and Stegun , 1964] that the
Wronskian is given by

W(j ,h~
1
~ ):J h~~~ ’ — j  

I~~~( 1) 
= 

1

n ~ fl n n (ka)2

Hence (2.18) can be rewritten in the form:

or 

A~ = 

i(ka)2 {i/(ka)
2
~ 2j Ih~~

l) }
A = 

1 
(2.19)n _l+2i(ka)Lj ‘h ’1’n n

where it is to be understood that ~~~~~~~ j ’ ( k a ) h~
1
~ (ka )

and • denotes differention with respect to the argument. Here

the eigenvalues A n are dependent on the value of k.

Consequently we would expect that as k -
~ 0 we would recover the

eigenvalue spectrum obtained in the previous section. That this

• is indeed the case can be seen by means of the following asymptotic

analysis .  From ( M. O . p. 22)  we have the expansions :

h U)(z) = 1—n—l ~~~ (..1)m (n+l/ 2;m) (2.20)
m=O (2~ Z)

m

j (z) = ~~ • I ~l~~ ( . l) m (Z,2) 2m

~~~~~ 
I~~~J~~~~~~j  

m!r(n+m+3/2) (2.21) 

• 
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where
( 1 ) m (n+1) (—n)

(n+h/2 ,m) = 
in! 

m m

and

— 
r (v-f-m)(v )  . — ______m r ( v )

consequently (2.20) can be written in asymptotic form (for small

z) as

(z) = ~~~~~ 
e~~~(_1)n (n+l/2 ,n) (1+0(z))fl Z (2iz)

1 
(1+0(z)] (2.22)

and we can deduce that

hWI (z) = 
-(n+1)(n+l/2 ,n)e (1+0(z)) . (2.23)

x2 z

Similar ly we obtain

,1i Iz )~ 1j (z) = —
~
. 

~ j 1~~~+3/2)~ 
O(z ) (2.24

and

j~~(z) = 

2n+l ftn÷3/2) + 0(z ). (2.25)

Consequently

j~~(z)h
W (z) = 

~~~~~~~ r(n+3/2) 
+ ( [l+0(z)]}

=

iz
= a~b !2__ ( 1 + 0 (z ) ]  (2 . 2 6 )

L
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.

where a and b are defined in an obvious manner.n n

Setting

= a b = 
n,/~ (n+l/2 ,n) — 

1 n~W (n+1/21n) (2 27)

and 

2~~
1r~~+3/2) 2~ 

— 

~~ 22n+lJ~( ÷3/2)

z = k a ,

we find on using (2.26),(2.27) that (2.19) can be written in

the form

(2.28)
_ l+2 iz 2{c~~ ._ 2 .( 1+0(z) ] }

_l+2ic e~
Z
+O (z) (2.29)

In order that this result (2.29) should agree with (2.11) we

must have
2n2ic~ = 
2n+l (2.30)

That this is indeed the case can be seen as follows. From the

definition of (n+l/2 ,m) and (2.27) we obtain

2 - 
ni’W(n+l/2 ,m) — 

nr (1/2)(-l)’~(n+1) (-n)
ic — 

22~ r (n÷3/2 ) 
— 

22n ni F (n+3/2)

and since

(_l)n (fl+1)~~(_fl)~ r(2n-s-l) = 22r~ni 
F(n+1/2)

we find that

2ic = 
nr(1/2)r(n+1/2) 

= 
n

n r (l/2)r(n+3/2 ) n+l/2

as required .
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For large values of z it follows from (2.20) and the fact that

(n+1/2 ,0) = 1, that for the spherical Hankel function of the

f i r st kind,

¶ hW (z) = ~~~~ s— (1+0 (l/z))

and

(z) = 1-n~e~~ (1+0 (l/z)).

Similarly , for the spherical Hankel function of the second kind

we have that

h~
2
~~(z) = 1(n+1) e (1+0 (i/z)).

Hence

j (z):=

= ~~ [i 
_1
e +i~~

le~~j 
(1+0 (l/z))

and
j  (z)hW (z) = 1 [i 2fl+l 2iZ

i J (1+0(1/z)).
2z

Therefore, from (21.9) and the definition of the Wronskian it

follows that

A = 
1

n 
~~~~~~~~~~~~

= {1+ [(_ 1) ne2 _ 1~~i+o( 1,z) 1}_ ~ .

Consequently , the asymptotic form of the eigenvalues for large

values of z is

An = (—l)~ e
2
~~~[1+O(l/z)] . (2.31)

The results of numerical calculations of these eigenvalues

and their reciprocals are plotted in Appendix II. The first

eleven eigenvalues (equ. 2.18) are shown as function s of ka

H- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _
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illustrating how the asymptotic behavior (equs. 2.29 and 2.31

for low and high frequencies respectively) is approached .

3. On the polar decomposition of K.

The results of the previous section indicate that as k

varies the eigenvalues of K become complex . Furthermore , as k

increases the modulus of the eigenvalues tends to unity . This

suggests that K should be decomposable either as the sum or pro—

duct of operators, one of which is unitary , in order to be able to

exploit the behaviour of the eigenvalues of K for large k.

One way of effecting such a decomposition is afforded in the

so-called polar decomposition of operators (Naylor and Sell , 1971].

Specifically , given a linear, normal operator K: H+H, where H

is a separable Hilbert space then there exists a unique decompo—

sitio~ of K in the form

K = U R = RU (3.1)

where R: H~H is a positive, seif-adjoint, linear operator and

U: H+H is a unitary operator .

Now the boundary integral equations in which we are interested

have the typical form

(I—AK)w = g c H, A c . (3.2)

Therefore , if K is normal then (3.2) can be rewritten either

in the form

(U~~-AR )w = , g = (3.3)

or as

(1C 1-AU)w = , g R~ (3.4)
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Consequently in the light of the results of the previous

sections we are led to make the following conjectures.

Kl. As z: ka~o then K-~U therefore R+±I and R -~~I

where I is the identity on H. Consequently, the high

frequency behavior of the required solutions to (3.2) is

determined from the solutions of the equation

(I-AU)w
~, g0, , w~ = lim Rw = ±lim w , g~ u r n  g (3.5)

z-~~ k+oo

where this equation has been obtained from (3.2) and (3.4)

in the limit as z-~~.

K2. As z: ka~0 , K becomes self adjoint therefore U-~±I

and U 1+±I. Consequently, the low frequency behavior

of the required solution to (3.2) is determined from the

solutions of the equation

(I-AR)w0 
= g , w = him Uw = lim w , g = him g (3.6)

0 0 z~0 z-0 ~ k9O

where the equation has been obtained from (3.4) in the

limi t as - z~ 0.

The Spectral Theorem (Naylor and Sell , 1971) states that if

K:H~H is a compact, normal operator then there exists a resolution

of the identity {E~ } and a sequence of complex numbers

such that

K ~ u~E~ (3.7)

where the convergence in (3.7) is understood to be in terms of

-— the uniform operator norm topology .
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{E } is a resolution of the identity provided

(i) E are orthogonal projections, i.e., E~ = =

and R(E~ )iN(E~ )

(ii) E E  = 0 , n m

(iii) 1E ~~= I

In the case under consideration , p and E may be

determined from 2.12, 2.15, 2.18 to be

p = A~~ = iz 2{j~~(z)h w (z)+ i ( ) h ~
1
~ 1(z)} (3.8)

E~~(.) = 
2~~ l 

J
dO 

10 
qS~ flOqP~~(C0SO p q ) 

(.). (3.9)

The well-known properties of the spherical harmonics (M.0. p. 55)

enable one to verify that (i)-(iii) are fulfilled .

In general, provided 
~~~~~ ~ 0, and since the En are

orthogonal projections, we can write

K = 
~~ 

linEn = ~ IP~ IE~ ~ lim 1P~~ ~
Em 

= RU . (3.10)

Now, any operator K which can be written in the form (3.7) is

called a weighted sum of projections. Therefore the operators

R and U appearing in (3.8) and defined by

R:= 
~ IlinlEn U:= ~ lA~~ P~~I

1E~ (3.11)

are both weighted sums of projections and R is self-adjoint

since the weights are real ( I P ~~~I~~~R) . Furthermore , by first

recalling the properties of the resolution of the identity ,

- • -- -~~~ - -

~~~~~~~ I
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elementary manipulation shows that rj is unitary . Therefore

(3.10) provides the required polar decomposition of K. We are

now in a position to examine the con jectur es Kl and K2 if we

recall the asymptotic estimates obtained in the previous sections ,

namely

1— (2 n +l) + 0(z) , for small z and fixed n.
A (z) n —2~ ze + 0(l/z) , for sma ll z and fixed n.

Consequently

—l .,
~~~~~~ 

[1+0(z)] for small z and fixed n ,
p ( z ) := A ( z )  = 

(~.n .~.)
n 2iz(-1) e (l+0 (l/z)] for large z and fixed n,

(3.12)
and we obtain by direct substitution of these quantities into

(3.11

R = I I v  I E  = j  2n+~ J p (cos 0 ) (•)dS [1+0(z))
n=O ~ n=O 4ira ~~ pq q

= —I(l+0(l/z) for large z . (3.13)

U = 
~ 

li~~I l i~~I ’E~ = - I (2~;
1) J P~~(cos Opq)(1)dSq [l+O(Z))

= -1(1+0(z)) for small z . (3.14)

4. Conclusion,

In this note we have begun an investigation into both the

theoretical and practical consequences of treating certain

commonly occuring operators of mathematical physics as operator

valued functions of a parameter.

As a first consideration of this problem we have confined

our attention to boundary value problems associated with the
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Helmholtz equation in the particular case of spherical symmetr~ .

We have seen that when ac~ is a sphere then equation (1.4) can

be solved analytically. Consequently a number of quantities which

are known to depend upon a certain parameter can be computed

directly and so the dependence can be exhibited . Specifically,

we have seen that as k varies ,the eigenvalues of K become

complex . Furthermore we have seen that as k increases the

modulus of each eigenvalue tends to unity . This suggests that

K should be decomposable as the product of operators , one of

which is unitary , in order to exploit the behavior of the eigen-

values of 1< for large k. This decomposition was explicitly

exhibited for the spherical boundary . Promising as this appears

at first sight, it turns out not to be a very practical proposi-

tion in general , since its implementation requires an intimate

knowledge of all the eigenvalues and eigenvectors of K. Further-

more such polar decomposition of K is only conveniently

available for compact normal operators and while it can be shown

(Appendix I) that K is normal for spherical geometries , this

may not be true in general. Nevertheless we shall show in

subsequent communications that there are factorization methods

which do offe r  good practical prospects especially if instead of

K attempts are made to factorize (I-K)~~~, the resolvent of K.

Finally we remark that the equation whose solution is sought,

(2.l),has obvious difficulties for those values of ka for

which A~~(ka)=l~ where A~~(ka) are the eigenvalues of equ. 1.4.

To show that such critical values do occur in the spherical

example treated here , the quantity IA ~~~~~) •••h I is plotted as

functions of ka for 0 < n < 10 in Appendix II. 

—--- •
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Appendix I. Concerning the normal i ty  of boundary in~~~~ra1

operators.

On L2 (3f1) we define the inner product

(u,v) = - , p ~ a c~ (Al .l)

where dS denotes an element of area of the surface ac~ takenp
with respect to the coordinates of a point p c 3

We introduce an integral operator K: L2 (3~~)- s L2 ( 3~~)

defined by -

(KU) (p): = J ~~~~~~~ u(q)dS , p,q c 3 (Al.2)
ac2q 

n~ q

where the kernel of this operator is generated by y(P ,Q) ,

P, Q c ?i, a function ~of position in ~ = 1W3~~. The domain

functional is conveniently taken to be the fundamental solution of

the associated partial differential equation . In this example ,

in which we are considering the Helmhoitz equation , we take

ikR
y(P Q)= _ , R: = i” 6 1 , P,Q c . (Al.3)

The adjoint of K is obtained by considering

• (Ku,v) = J (Ku)(p)v(p)dS

= J:: p{I~~q ~~ P~:u~~~dS
q}
~~Pdsp

Ja
~
2q

U(~ ){Ja
~
1p 

~~~ (P~~)~~(P)ds
p}
~1sq

(u,K*v)
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where

(K*v) (q): = J~ ~* 
(p ,q)v(p)dS ~ . (Al.4)

In order to investigate the normality of the operator K we

examine the properties of

S: K*K — KK* (A1.5)

Substituting for K and K* in Al-S we obtain

( su)  (~~) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(Al.6)
Consequently

D(p,q): = ~~~~~~~~~~~~~~~~~~ (c
~~r)}dSr 

= 0 (Al.7)

is a necessary and sufficient condition for the normality of K.

To see that ALl is satisfied for the Helmholtz equation

and 3~l a sphere we first write (2.15) in the form

= 

~~~~~~~~~~~~~~ 
O
pq

):= Z
0
F~~(a)P~~(P~q) (Al.7)

ik 2 (1)’ 1where Fn (a) = —~— (2n+1)[j (ka)h~ (ka)+ j~~(ka)h~ ~(ka)].

Substituting Al .7 into Al.6 yields

D(p,q) = J f ~ 
F (a)P (r,q) 

~ 
F (a)P (r,p)

m=0 m m

- I F (a)P (p,r) 
~ ~

Tha)P (~~ r)}dS

— 

- 

n=0 m=0 m m 

- 

r ~~~~
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= 

n=0 J0
F’n m~~~ J { P n

(r~q)P (r ,p)_P (p,r)P (q,r)}ds

= 

~~~~~~~~~ 
(a) 2n+l {P~~p~

q)_P~~(p,q)}

= 0.

Hence for the particu lar case of the Helmholtz equation and

a spherical surface the boundary integral operator

K: L2(3~?) -. L2 (a~ ) is normal.

- - -- - - - - -—----- - - --—- - - - - - -



—20—

Appendix II. Numerical results.

Equation (2.19) defines A n explicitly as

A = 
1

n —l+2i(ka)2j~~(ka)h~~~~(ka)

To illustrate the behavior of the eigenvalues as functions

of ka, A~ is plotted as a function of ka for 0 < n < 10

and 0 < ka < 10 in Figures 1-11. Notice that the asymptotic

behavior for small and large ka is evident although for the

larger values of n, values of ka greater than -10 are

required before the asymptotic approximation is reasonable. In

Figures 1-6, 8, 10 and 11, the horizontal and vertical scales

are different so extra care is urged in interpreting these graphs.

The reciprocal eigenvalues p = .
~— are plotted in Figs. 12—22.

The advantage in plotting in this way is that the 
~n 

are

bounded and the same scale can be employed for all.

- 
Since the equation to be solved is

(I—Ak)w =

with A = 1, it is of interest to observe how close this value

of 1 is to an eigenvalue. To exhibit this the quantity

is plotted as a function of ka for 0 < n < 10

and 0 < ka < 10 in Figures 23—33.

_ _
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